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Abstract. An algorithmic compositional system that uses hill climbing
to create short melodies is presented. A context free grammar maps each
section of the resultant individual to a musical segment resulting in a
series of MIDI notes described by pitch and duration. The dissimilarity
between each pair of segments is measured using a metric based on the
pitch contour of the segments. Using a GUI, the user decides how many
segments to include and how they are to be distanced from each other.
The system performs a hill-climbing search using several mutation oper-
ators to create a population of segments the desired distances from each
other. A number of melodies composed by the system are presented that
demonstrate the algorithm’s ability to match the desired targets and the
versatility created by the inclusion of the designed grammar.
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1 Introduction

This study introduces an algorithmic compositional system that creates short
melodies from the combination of a number of melodic phrases or segments
using a pre-defined context-free grammar. Each segment is related to each other
according to a distance specified by the user. The user need not define any
musical criteria for the compositions, merely how many segments there should
be and how similar each segment should be to each other. In this way, the user
can create compositions with no prior musical knowledge.

The proposed system is based on an evolutionary strategy. It is not dependent
on the ‘survival of the fittest’ concept of traditional evolutionary algorithms as
it does not measure fitness from individuals in a population but rather from the
combination of segments of one single individual. Thus a segment has no merit
on its own but only has importance according to how it is placed in relation to
its neighbours. Once an operation is performed, a newly created segment only
survives to the next generation if its inclusion improves the performance of the
whole individual. This improvement is measured in relation to how the segments
of the individual conform to the user-specified distance. The system employs a
hill climbing evolutionary strategy with variable neighbourhood search.
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The following section describes some relevant previous work in the fields
of algorithmic composition and background to this work. Section 3 describes
the workings of the system, specifically the Grammar, Fitness Function and
Operators used. A description of the experiments undertaken is given in Sect. 4.
The results are discussed in Sect. 5 along with a selection of compositions before
conclusions and future work are proposed in Sect. 6.

2 Related Work

Algorithmic composition involves composing music according to a given set of
instructions or rules. While this could refer to any hand-written set of rules used
to compose, in recent years it has involved the use of computer code and in par-
ticular machine learning techniques. A comprehensive survey of computational
and AI techniques applied to algorithmic composition is given in [6].

2.1 Composing with Evolutionary Computation

This system is based on an evolutionary strategy. Evolutionary techniques are
well suited to creative tasks such as music composition as they are population
based and inherently non-deterministic; a solution is not determined outright
but found by stochastically combining and altering high-performing solutions.
Various EC methods have been used previously for melodic composition. Gen-
Jam is a well-known system that uses a Genetic Algorithm (GA) to evolve jazz
solos and has been used in live performances in mainstream venues [1]. A modi-
fied GA was used in GeNotator [19] to manipulate a musical composition using
a hierarchical grammar. More recently, GAs were used to create four part har-
monies without user-interaction or initial material according to rules from music
theory [5]. Genetic Programming (GP) has been used to recursively described
binary trees as genetic representation for the evolution of musical scores. The
recursive mechanism of this representation allowed the generation of expressive
performances and gestures along with musical notation [4]. Grammars were used
with Grammatical Evolution (GE) [2] for composing short melodies in Elevated
Pitch [16]. From four experimental setups of varying fitness functions and gram-
mars they determined that users preferred melodies created with a structured
grammar. GE was again employed for musical composition using the Wii remote
for a generative, virtual system entitled Jive [17]. This system interactively mod-
ified a combination of sequences to create melodic pieces of musical interest.

The proposed system is a development of earlier experiments that used GE
to create short novel music pieces. These experiments employed a grammar to
create individuals consisting of notes, turns, chords and arpeggios and measured
the fitness of each individual according to a statistical measure of the resultant
tonality or the Zipf’s distribution of a number of musical qualities [11,12]. An
interesting observation from these studies is that when similar (but not identical)
individuals were concatenated together, certain themes or motifs emerged giving
a new musicality to the composition. This was possible to exploit using GE as
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such evolutionary methods use a population of solutions, resulting in a number of
highly fit individuals at the end of a run. For the current system, it was decided
to exploit this relationship further, taking a measure of similarity between the
musically mapped individuals as a fitness function for the entire population.
This has been developed into a hill-climbing system with the individuals in GE
replaced by segments and the population replaced by one complete individual.

2.2 Musical Fitness

If an EC system does not use an interactive fitness function, one of the most
difficult aspects of using the system to compose music is in designing the fitness
function; how can we attribute numerical merit to one melody over another? The
given system exploits the aesthetic aspect of repetition within music. Repetition
in music has been shown to have a profound affect on the enjoyment of music,
both in the repetition of full pieces [7,13] and in the analysis of form and meaning
within music [15]. Repetition was also found to be an extremely useful aspect of
using EC in previous experiments [12] leading to a focus on this quality for the
given system.

For these compositions it is the variation on a theme — segments of a piece
that are partly repeated or share similarities in some respect — rather than an
exact repetition of a phrase that is desired. To develop such a fitness function a
method of measuring the distance between two given melodies is required. Many
studies have looked at musical similarities, most concentrating on similarities
in the audio signal [10,18]. Others, such as the current system, only consider
the MIDI values of the notes. Some studies have used edit distances for such
measurements. A probabilistic method on melodic similarity was used with a
designed edit distance for query by humming tasks [8]. Measures of similarities
between musical contours have also been considered [3].

The musical distance used in this system is measured from a step-wise list of
the contour of the pitches in the segments as discussed in the following section.

3 Method

This section describes these three processes used in this system to compose
music: the grammar, fitness measure and operators.

3.1 Grammar

Context free grammars can be used to map information from one domain into a
more meaningful domain, allowing the user to develop a representation suitable
for the problem at hand. Such a grammar is employed in these experiments
similarly to how they are used in evolutionary methods such as GE, whereby
the genotype — a variable length integer string known as codons, is mapped
to the phenotype — a command language that is interpreted into MIDI notes.
A grammar in Backus-Naur Form (BNF) is used, whereby a given expression is
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expanded according to a series of production rules. The choice of each rule is
determined by the current integer codon:

Rule = (Codon Integer Value)mod(# of choices) (1)

The creative capabilities of grammar-based methods come from the choices offered
within the mapping of the grammar. The grammar used in this system expands the
genotype into the description of a number of musical events — notes, chord, turns
and arpeggios. The grammar and a brief description of its use is shown below. A more
detailed description of the inner workings of this grammar can be found in [12].

<individual> ::= <piece>|<piece>|<piece><transpose>

<piece> ::= <note><note><note><note><note>

<note>::= 111,<style>,<oct>,<pitch>,<dur>,

<style>::= 100|100|100|100|100|100|100|100|50,<chord>|50,<chord>|

50,<chord>|50,<chord>|70,<turn>,100|80,<arp>,100

<transpose> ::= 90,<dir>,<TrStep>,

<TrStep> ::= 0|1|2|2|3|3|4|5|5|5|6|7|7|7|8|8|9|9|10|10|11

<chord>::= <int>,0,0|<int>,<int>,0|12,0,0|<int>,0,0|<int>,0,0

|<int>,0,0|<int>,<int>,<int>

<turn>::= <dir>,<len>,<dir>,<len>,<stepD>

<arp>::= <dir>,<int>,<dir>,<int>,<ArpDur>

<int>::= 3|4|5|7|5|5|7|7

<len>::= <step>|<step>,<step> |<step>,<step>,<step>

|<step>,<step>,<step>,<step>|<step>,<step>,<step>

<dir>::= 45|55

<step>::= 1|1|1|1|1|2|2|2|2|2|2|2|2|3

<stepD>::= 1|2|2|2|2|2|2|4|4|4|4|4|4

<ArpDur>::= 2|2|2|4|4|4|4|4|8|8

<oct>::= 3|4|4|4|4|5|5|5|5|6|6

<pitch>::= 0|1|2|3|4|5|6|7|8|9|10|11

<dur>::= 1|1|1|2|2|2|4|4|4|8|8|16|16|32

This grammar results in an individual piece of music that may be transposed up
or down a given interval. The piece is comprised of five note events each of which can
either be a single note, a chord, a turn or an arpeggio. A single note is described by
a given pitch, duration and octave value. A chord is given these values but also either
one, two or three notes played above the given note at specified intervals. Turn results
in a series of notes proceeding in the direction up or down or a combination of both.
Each step in a turn is limited to either one, two or three semitones. An arpeggio is
similar to a turn except it allows larger intervals and longer durations. The application
of this grammar results in a series of notes each with a given pitch and duration. The
inclusion of turns and arpeggios allows a variation in the number of notes that are
played, depending on the production rules chosen by the grammar. The use of such
grammars allows the introduction of a bias by including more instances of one choice
over another. For example, a tone (value 2) is the most likely choice for the <step>

rule above as there are more instances of that choice available.
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3.2 Fitness Measurement

The fitness of the individual is calculated after the grammar has been employed to
expand each segment into a series of notes. Fitness is taken as a measure of how close
the segments fit to a pre-chosen pattern within a metric space.

Fig. 1. Four variations on a melody

To consider the distance between two segments, the relationship between the pair
is examined at every time-step. The pitch line is expanded for each segment to give
a pitch value at each demisemiquaver (duration of 1 in the grammar). For example, if
there is a crotchet (duration 8) played at D (pitch 2) this is represented as a list of
8 values of 2. This results in a list for each segment that indicates the pitch of that
segment at every moment of duration. In the case of a chord, only the root note of the
chord is considered. These experiments encourage the use of transpositions of melodies;
melodies that are alike apart from a pitch shift are to be deemed equal. To achieve
this, each pitch vector is normalised to start at 0. In this manner it is a pitch contour
that is being examined, rather than the actual pitch values. The distance between
two segments is then taken as the sum of the absolute distance between their pitch
contours at each time step. If one contour is longer than the other, the difference in
length between the two is multiplied by 5 and added to the distance between them. As
there is a maximum distance of 11 semitones between two lines at any point, the value
of 5 was chosen as the median of this pitch interval. This heavily penalises segments of
different lengths to account for possible pitch differences as well as the length difference
when notes are absent. To illustrate this, consider the four musical measures depicted
in Fig. 1. As described, these contours are calculated as:

ContourA [0 0 0 0 4 4 6 6 7 7 7 7 6 6 6 6]
ContourB [0 0 0 0 4 4 6 6 7 7 7 7 5 5 5 5]
ContourC [0 0 0 0 0 0 0 0 7 7 7 7 6 6 6 6]
ContourD [0 0 0 0 4 4 4 4 6 6 6 6 7 7 7 7 6 6 6 6]

The differences between each variation to the original melody A is given by:

Diff A−B sum[0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1] = 4
Diff A−C sum[0 0 0 0 4 4 6 6 0 0 0 0 0 0 0 0] = 20
Diff A−D sum[0 0 0 0 0 0 2 2 1 1 1 1 1 1 1 1] + (5× 4) = 32

From these measurements, Melody B is most similar to Melody A, followed by C and
finally D. Using this distance metric it can be ensured that melodies which stray in
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pitch but maintain a similar rhythm (such as Melody A & B) are not considered
as different as those that differ in rhythm (such as Melody A & C). Two melodies
which are identical other than an early timing difference will be measured as having
a large dissimilarity between them: a ‘ripple effect’ of the timing difference will cause
all following notes in one melody to be offset from their matching notes in the other.
We acknowledge that this is only one possible measure of melodic similarity and are
considering alternative methods. The use of dynamic programming algorithms such as
the Levenshtein edit distance [9] were also considered for this purpose, although early
experiments did not produce encouraging results with this system.

The distance between each pair of segments in the individual is measured and com-
pared to an ideal list of measurements to determine fitness. We acknowledge that the
space within which the distances are measured is an abstract metric space. However, it
is useful for the user to visualise these distances in a two-dimensional geometric space.
For example, consider five segments [a, b, c, d, e] equally spaced in a pentagonal shape
as per the diagram in Fig. 2. We know that in a pentagon the length of a diagonal
e.g. (a, c) is approximately 1.6 times the length of a side e.g. (a, b). The spacing of
the segments can be completely described by specifying a distance between each pair
of points:

a b c d e
a 0.0 1.0 1.6 1.6 1.0
b 1.0 0.0 1.0 1.6 1.6
c 1.6 1.0 0.0 1.0 1.6
d 1.6 1.6 1.0 0.0 1.0
e 1.0 1.6 1.6 1.0 0.0

As this is symmetrical about the diagonal, a unique description of the distances
between all points can be given by the upper triangle of this matrix collapsed into the
row vector. Hence the pentagon shown can be described by the distances [1, 1.6, 1.6,
1, 1, 1.6, 1.6, 1, 1.6, 1] or a scalar multiple of this vector. The fitness of an individual is
measured by defining a list of ideal distances such as this and taking the absolute error
from the actual measured distances to these ideal distances for each pair of segments.
The fitness of the individual is calculated as the mean squared error (mse) of this list
of errors.

Fig. 2. Five segments equally spaced in a pentagonal arrangement

Each individual is defined as an ordered list of segments. Due to the method of
calculating fitness, the ordering of these segments is extremely important. Re-ordering
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the given segments is one of the simplest yet most powerful operations that can be
implemented on the individual melody, as described in the following section.

3.3 Operators

In each generation there are five possible operators performed on the individual: Switch,
Permute, Crossover, Mutate and Copy. Each of these are performed in succession until
an improvement on the individual is found. Once the fitness improves, the individual
is updated and the next generation is started.

Switch. The Switch operator switches the ordering of each pair of segments. A new
individual fitness is measured for each switched pair and the best fitness obtained
is recorded.

Permute. The Permute operator makes one random permutation of all of the ordered
segments. The ordering and fitness of the new individual is noted.

Crossover. The Crossover operator selects each pair of segments within the individual
and performs typical crossover on them, resulting in a new pair of segments. Again
the new individual fitness is measured and recorded for each crossed pair and the
best fitness is noted.

Mutate. The Mutate operator selects each segment in turn and performs a mutation
on it. The mutation rate is initially set to 0.01 giving a 1 % chance that any given
codon will be mutated. The new individual and fitness is measured and recorded
for each mutation.

Copy. The Copy operator picks two segments at random and replaces one with a copy
of the other. The new individual and fitness are noted.

Crossover and Mutate are typical operators in any evolutionary system. Switch and
Permute were developed for this particular system as the ordering of the segments has
been shown to be very important. Copy was included as repetition or variation of a
segment may be very important in the system. These operators are implemented in
order of how much effect they have on the individual. Switch merely switches the order
of two segments and so has least effect on the individual. Permute has more effect in
that it can re-order all segments, but it still does not introduce any new material to
the individual. Mutate and Crossover both introduce new material. Mutate replaces
one segment, whereas Crossover combines two segments into two new segments. The
degree to which each of these operators has an effect on the content of the individual
is dependant on the mutation rate and the selection point for crossover. With a high
mutation rate a single mutation can cause a large difference in a segment. Conversely
if the crossover location is towards the end of the genome, much of the initial segments
may remain unchanged. Hence Crossover is considered to have less effect on the indi-
vidual, although this is dependent on the specific operation. Copy completely removes
one segment from the individual without introducing any new material and is hence
considered to have the largest effect on the individual.

With these operators applied in succession, the algorithm continually implements
changes of a small step size until this small step is no longer effective. Only then can it
make a larger change to the individual. Once any change is made, the algorithm returns
to checking each Switch again for a small improvement. In this way, the algorithm sys-
tematically searches a small step — or the local search space — before searching further
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away for a better performance. This operates in the manner of a Variable Neighbour-
hood Search (VNS) whereby a local minimum is found before the search moves out to
a wider neighbourhood [14]. The operators that perform multiple operations (Switch,
Crossover, Mutate) systematically try each operational possibility and pick the best
improvement as the outcome. Conversely Permute and Copy are only given one chance
in each generation to improve the fitness. Permute is used this way as it is considered
an extension of Switch. Similarly, Copy is only used once at the end of a generation
when no other operator has improved the fitness.

4 Experiments

This section discusses the design choices considered in implementing the system.

4.1 Melody Shapes

For a user-friendly system, the user must be able to easily specify distances between
segments. The simplest way to define such distances is graphically. A ‘Music Geometry
GUI’ was created that allows the user to specify the number of segments and their
placements in a two dimensional square. The user can place any number of points
within the square and a numerical distance (integer) between each pair of points is
returned. The target vector in the fitness function is this list of distances. The length
of the composed melody is dependant on both the number and length of segments
used. The number of segments in an individual melody is controlled by the user as
the number of points she plots. The length of each segment can be controlled by
adding more instances of <note> in the grammar. In either method of elongating the
composition, more calculations are involved and hence a longer run time is required.

Four separate shapes were defined using the Music Geometry GUI. The design of
these shapes is shown in Fig. 3. Cluster is the simplest shape containing only six seg-
ments split into two distinct clusters. Circle contains nine segments that traverse in
a circular shape before returning to where they started. Cross also contains nine seg-
ments, whereby each alternative segment returns to the original starting point, forming
a cross shape. Line contains twelve segments at similar distances moving linearly away
from the starting point.

Fig. 3. Shape Targets for the Cluster, Circular, Cross and Line melodies as created by
the Music Geometry GUI



118 R. Loughran et al.

4.2 Experimental Variations

Each experiment was run 30 times on all shapes with five set-ups.

Random Search. To confirm the search operators were effective on the given prob-
lem, each experiment was compared against a random search for the desired shape. For
this, a new individual was initialised and evaluated a given number of times, recording
the best fitness achieved. To ensure a fair comparison, the number of evaluations was
adjusted according to the number of segments in each shape. For the Cluster melody,
six segments results in 15 evaluations for both the Switch and Crossover operators, six
evaluations for the Mutate operator and Permute and Copy will make one evaluation
each resulting in up to 38 fitness evaluations per generation. Likewise for the Cir-
cle and Cross individuals, both with nine segments, there can be up to 83 evaluations
(36 + 36+ 9+ 1 + 1) and Line individuals could require up to 146 (66+ 66 + 12 + 1+ 1).
As each experiment was run for 1,000 generations, individuals were initialised and eval-
uated in the random search for Cluster, Circle, Cross and Line 38,000, 83,000, 83,000
and 146,000 times respectively.

Mutation Coefficient. The first experiment incorporates all operators with the
Mutation Rate (µ) set to 0.01. This is a typical µ value in GE experiments employing
a BNF grammar with an initial number of 100 codons. A higher µ typically results in
random-like behaviour in GE experiments due to the ripple effect in which changes in
the genome can have a very destructive effect on the phenome. Nevertheless, in pre-
liminary studies it was found that using a higher µ in these experiments was leading to
better final fitness. Mutation operates in a different manner in this system as regardless
of the value of µ, only one segment is mutated, hence only part of the individual is
affected. As a second experiment µ was increased to 0.1 and melodies for each shape
were evolved again.

Limiting Operators. The final operator used in any run is Copy. This opera-
tor removes one entire segment without introducing new material so it could be very
destructive. Conversely, for patterns that require two segments to be very close or iden-
tical, Copy may be very beneficial. To examine the effectiveness of Copy within the
system each experiment was run again without the use of Copy.

This results in a total of five experiments: Random, All Operators with µ = 0.01
(AllMu01), All Operators with µ = 0.1 (AllMu1), No Copy with µ = 0.01 (NCMu01)
and No Copy with µ = 0.1 (NCMu1).

5 Results

A selection of melodies produced by this system can be listened to at http://ncra.ucd.
ie/Site/loughranr/EvoMUSART 2016.html. The fitness results for each melody shape
both for all four variations of the system and for random search are shown in Fig. 4.
The fitness results shown are the average of the best fitnesses achieved over 30 runs.
These figures demonstrate a consistent performance for each experimental variation on
each melody pattern. It is clear that each version of the system achieves better fitness
than random search for each melody pattern. It is also evident that the AllMu01 and

http://ncra.ucd.ie/Site/loughranr/EvoMUSART_2016.html
http://ncra.ucd.ie/Site/loughranr/EvoMUSART_2016.html
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Fig. 4. Average best fitness for each experimental run and Random Initialisation for
each melody shape. Note scales between shapes will differ due to different number of
segments in each shape (Color figure online).
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Table 1. Average (over 30 runs) best Fitness after 1000 generation achieved with each
method for each pattern. Standard deviation is shown in parenthesis.

Method AllMu01 AllMu1 NCMu01 NCMu1 Random

Cluster 5.37(1.9) 4.49(1.8) 28.79(11.4) 21.15(15.0) 252.52(26.6)

Circle 13.23(4.5) 12.78(3.15) 35.88(14.5) 23.48(8.26) 535.861(54.7)

Cross 10.54(5.7) 7.55(3.4) 40.08(18.7) 17.89(11.3) 556.21(54.3)

Line 19.14(5.9) 15.44(3.7) 50.45(18.8) 32.73(13.3) 864.48(65.7)

Table 2. Average number of fitness evaluations over 1000 generations actually per-
formed by each method for each pattern

Method Max AllMu01 AllMu1 NCMu01 NCMu1

Cluster 38,000 36,986 36,911 35,666 35,626

Circle 83,000 78,777 78,677 76,765 77,086

Cross 83,000 77,630 76,973 75,292 75,169

Line 146,000 131,618 130,788 128,695 128,998

AllMu1 experiments converge faster than the methods that do not include the Copy
operator. This demonstrates that the Copy operator is very important in converging to
a good solution with this system. NCMu01 performs worst across each shape, implying
that without the Copy operator a high µ is very important in traversing the search
space to find a good solution.

From the fitness curves presented, it appears that AllMu01 and AllMu1 display a
very similar fitness performance. To confirm their performances, the best final fitnesses
achieved after 1,000 generations were examined. The average best fitness achieved at
the end of each run is shown in Table 1. From this table it is evident that AllMu1 is
the highest performer of each of the versions of the system. This indicates that unlike
in standard GE experiments, a higher µ of 0.1 is more beneficial to the system than
the standard 0.01.

It is evident from both Fig. 4 and Table 1 that the Cluster melodies converge faster
and achieve better final fitness than the Cross and Circles melodies which in turn
perform better than the Line melodies. This is as to be expected as the fitness measure
is calculated from the distance of each segment to an ideal, hence individuals with
a larger number of segments will take longer to converge and have higher (worse)
fitnesses. Even so, all methods do converge, demonstrating that the system can find
solutions that approach the optimum.

5.1 Analysis of the Operators

As described in Sect. 3 the operators are applied according to a variable neighbourhood
search leading to a difference in the number of fitness evaluations in each generation.
Table 2 displays the average number of evaluations actually performed for each shape1.

1 Note that the NC methods use less as each Copy in each of the 1,000 generations
requires one evaluation.
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Table 3. Number of times each operator improved fitness with the AllMu1 experiment
for each shape

Method Switch Permute Cross Mutate Copy

Cluster 1122 18 664 687 280

Circle 1353 7 709 786 231

Cross 3500 2 1285 864 436

Line 5300 0 1987 1472 427

If after all operators have been performed there is no improvement, the current indi-
vidual is kept until the next generation, resulting in the maximum number of fitness
evaluations for that generation. The initial improvement in fitness shown during the
evolution of all melodies demonstrates that the operators are successful and hence there
are fewer fitness evaluations in early generations than in later ones. Certain operators
were found to be more useful than others. The total number of times each operator
produced a improvement in fitness is shown in Table 3.

It can be seen that for each shape Switch is the most successful operator. This is to
be expected as it implements the smallest change on the individual and it is the first
operator applied in each generation. Often Switch is applied many times in succession
as when a good Switch is encountered, the individual is updated and then each Switch
combination is applied again to see if further improvement can be found. This is seen to
be particularly useful at the beginning of a run. Crossover and Mutate were found to be
the next most successful. Copy was already shown to be beneficial in the experiments,
however it is not found to be as successful as the previous operators. This is to be
expected as it is quite destructive and also it is the last operator to be checked for a
fitness improvement. Permute, however, is very rarely chosen as a successful operator.
There are a number of possible explanations for this. Firstly, Permute is only given one
random opportunity to produce a better individual whereas Switch, Cross and Mutate
all have multiple opportunities depending on the number of segments in the individual.
Furthermore, Permute is implemented directly after all possible Switch operators have
been tested (i.e. the Switch arrangement is optimal). Hence a further re-ordering of the
segments is unlikely to have an effect. Also it should be noted that Permute is used
more for individuals with lower number of segments than with higher.

It was observed that more operators were successfully used at the beginning of a
run. To test this observation the number of fitness evaluations made were compared
against the highest number possible for the Line melodies. As each Line melody has
12 segments, the maximum number of fitness evaluations per generation is 146. Figure 5
shows this maximum against the number of evaluations actually implemented for each
of the four methods on the Line melody. This figure shows that for each method the
number of evaluations increases more slowly than the maximum up until approximately
generation 300 at which point it increases in line with the maximum. As expected,
this change in frequency of implementation of an operator aligns with the point of
convergence of these runs, at which point little further improvement is seen in the
fitness.
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Fig. 5. Average number of fitness evaluations per generation for each of the four meth-
ods on the Line melody compared the maximum possible number

5.2 Melodies

From produced melodies, it is clear that some shapes are easier to hear than others.
Of the four shapes, we found Cluster and Cross to be easiest to identify. These melodies
are repeated twice to emphasise their corresponding shapes. The similarities in the
segments within the clusters in the Cluster melodies are evident to the ear. Even when
these are transposed, as in Cluster2, the transposed phrases are easy for the ear to
recognise. Likewise with the Cross melodies, e.g. Cross1, the return to the central
segment results in a cyclical aspect to the composition. The pattern in the Circle
melodies are slightly harder to discern. Each Circle melody is repeated three times
to encourage the pattern to emerge. Each segment steps away from the previous but
circles around and returns to the starting position. As the piece gradually returns we
can hear consistencies throughout the melody. Circle3 for instance is a slow moving
piece with a semibreve in each segment. Although the segments go through many
changes in the cycle, this long note anchors the piece into a sense of continuity. The
combination of quick runs followed by a long chord results in a similar effect in Circle1.
In the Line melodies the segments can be heard to move gradually away from where
they started. However, without a return to a specific point such as with the Cross and
Circle melodies, or a closer variation within a group such as with the Cluster melodies,
the musical quality of these Line melodies is less evident than those produced from
other shapes.

When the shape is known, the authors can generally ‘hear’ this shape. To determine
if this is recognisable to a naive listener, a series of listening tests would need to be
conducted. The purpose of the system is not to exactly match such patterns however,
but to create an easy to use compositional system that can create interesting melodies
with a specified or implied level of repetition. The grammar used and the measurement
on a pitch contour lead to a transposed meaning of what constitutes the ‘same’ melody,
but this is purposefully introduced into the system to maintain variety and diversity
in the music produced.

5.3 Discussion

Evolutionary methods such as this hill-climbing algorithm are very suitable to this
type of creative problem. The stochastic element inherent to EC combined with the
specified grammatical mapping can result in a variety of musical features. It is difficult
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to formulate a linear or deterministic algorithm to create music that offers true surprise
or novelty. EC offers a rich search space that can be traversed in a variety of ways
depending on the fitness function selection methods used. This particular method uses
the relationship between elements of the composition as a selection criteria rather than
any specific musical content, thus the user can have no concrete expectations as to what
content the system will produce. Such systems offer a balance between randomness and
determinism in which computational creativity may have the opportunity to flourish.

As discussed, the above experiments were run over 1,000 generations resulting in
a maximum of 38,000 to 146,000 fitness evaluations per run. This may be considered
small in comparison to some EC experiments and yet the converged fitnesses in Fig. 4
show that this is sufficient. The lack of improvement in the Random plots however,
prove that this is not a simple problem. This demonstrates that the system is efficient
at finding good solutions and the operators chosen are adept at traversing the search
space effectively.

The way in which the user controls the composition is somewhat abstract. The user
has no control of the melodic content within the compositions. For the Line melodies
the linear decrease in the shape does not imply a decrease in pitch, merely that the
segments are linearly separated in the metric space. Likewise a circular pattern doesn’t
imply a circle of pitches. Nevertheless, we found that controlling this placement of
segments can result in interesting compositions.

The purpose of the system is not to make musical shapes, as such shapes do not have
particular meaning in a musical sense. The specific shapes described in this experiment
are used to demonstrate the operation of the system. The system does however offer
the user a simple way of controlling, albeit in an indirect manner, the approximate
length of the compositions and how much repetition or similarity is contained within
the melody. Combining the distance metric with the grammar results in a one-to-many
mapping; the distance metric from one shape can create a wide variety of melodies.
The system can be seen as either a potential compositional tool to assist in the creation
of musical ideas or a fun way for people with no musical experience to create musical
excerpts without having to specify any musical qualities in relation to timing or pitch.

6 Conclusion and Future Work

A system is presented that composes short melodies using a hill-climbing algorithm
with a context-free grammar. The system is driven by a fitness function based on the
distances between user-placed segments. No key or time signature is incorporated into
the system and the user does not require any musical knowledge. A selection of melodies
created by the system are presented demonstrating that the system can create a variety
of melodies that correspond to the metric distances specified by the user. The success
of the evolutionary runs of the system was confirmed against random search confirming
that the defined operators were extremely adept at traversing the search space to find
a good solution. By employing the operators in succession a variable neighbourhood
search was adopted in which the Switch operator was found to be most successful in
improving fitness followed by Crossover and Mutate.

In future work, we plan to consider alternative distance metrics for comparing
segments and to consider larger-scale segments that can refer to form in larger com-
positions. We are planning a series of listening experiments on melodies created by
the system to determine if there is a correlation between the similarity of melodic seg-
ments and musical preference. The music produced by the system is dependent on the



124 R. Loughran et al.

designed grammar, the implemented operators, the similarity measure used in the fit-
ness function and the shapes chosen by the user. In a future experiment we would like
to isolate these various aspects to determine their individual effects of the produced
melodies. In doing so, we hope to learn more about the perception and understanding
of melodic expectation.
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